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Abstract: A new functional, Psib(Φ), of an electronic state in solids based on the bonding indicator B(τ,τ′)
in terms of Mulliken’s electron partitioning approach has been introduced. Using Psib(Φ), the bonding
variations of an electronic state caused by electron-phonon coupling can be studied. With this proposed
approach, the differences between the “flat band” states for Hg in coupling to the phonons and the peaklike
structure of electron-phonon coupling constants in the q space are well explained.

Introduction

In exploring the connection between superconductivity and
chemistry, we have proposed a “flat band-steep band” scenario
for the occurrence of superconductivity based on the chemical
origin of pairwise attractive interaction between conduction
electrons.1 In this model, the coexistence of bands with large
dispersion and bands with vanishing slope at the Fermi level is
essential. This scenario bears some similarity with the “itinerant
electrons versus local pair” model2 also applied to high-TC

cuprates. However, our model is based on the actual band
structures extracted from first principles, which is not necessarily
equivalent to a two-band model. Through testing the model for
Hg3 and Ca,4 we have established the approach to determine
the “flat band” and “steep band” in the entire first Brillouin
zone. The interplay between the high-velocity electrons and
nearly zero-velocity electrons are realized through the interac-
tions with those phonons, which provide significant electron-
phonon coupling. In our previous work, we studied the coupling
between the electrons and specific phonons with the linear
response approach. By using the extended degenerate perturba-
tion theory, we have demonstrated the correspondence between
the electron-phonon interactions and the “dynamic pseudo
Jahn-Teller effect”.5 In this work, we will study the behavior
and particularly the bonding variations of the flat band states
caused by specific phonons.

Description of Method

Within the ab initio framework, the behavior of a specific
electronic state in a phononic field can be studied through the

linear response theory.6,7 or the frozen phonon approach.8 The
former approach can deal with any phonons; however, it does
not fully consider the anharmonic effects. The latter one
overcomes this difficulty; however, it is normally limited to the
high symmetric and commensurate phonon modes corresponding
to supercells of appropriate sizes. In this work, the frozen
phonon approach is used because the variation of a wave
function caused by a specific phonon can easily be obtained in
this approach.

A phonon mode can be viewed as a dynamic displacement
field ulκ acting on the equilibrium structure,xlκ ) xlκ

0 + ulκ,
wherexlκ

0 indicates the equilibrium position of theκth atom in
the lth unit cell; ulκ can be calculated from the following
formula:

whereAqj is the amplitude of the vibration,mκ the mass of the
κth atom,eκ

qj the polarization vector, andωqj the frequency.
The amplitude of a phonon at very low temperature can be
calculated based on the Debye temperatureθD as follows,9

wherekB is the Boltzmann constant. The polarization vectoreκ
qj

can be obtained from symmetry analysis10 or from linear
response calculations. Applyingulκ at an arbitrary time t, e.g.t
) 0, on a structure is equivalent to modulating it by a
displacement wave of wave vectorq of a phonon, and
accordingly, a specific electronic state|kj〉 will be transformed
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into |k (qj′〉. Two calculations based on the original unit cell
and the supercell, respectively, are performed, wherek is the
wave vector of an electron and j is the band index.

To see the variation in bonding involved in this process we
need a bonding indicator for a specific electronic state in a solid.
As the existing bonding indicators such as COHP11 embedded
in the tight-binding linear muffin-tin orbital (TB-LMTO)12

scheme and COOP13 embedded in theextended Hu¨ckel (EH)14

scheme are based on thedensity of states(DOS), they cannot
be used directly in our case. Considering a solid as a large mole-
cule,15 we can treat a one-electron wave function as a molecular
wave function. Suppose that we have a band state|kj〉 which
can be expanded in terms of some kind of basis set|øR

k〉,

where R runs over all freedoms of the basis functions, for
example, in the full potential LMTO (FP-LMTO) method,16 R
is just a shorthand notation ofτ, κ, L, with τ representing the
position vectors of atoms in the primitive unit cell,ε ) κ2 being
the energy parameter to represent the tail energy of the envelop
function, andL the combination of the angular momentum
quantum numbers l (0, 1, 2, ...) andm (-l, -l + 1, ... l - 1, l).
After the energy freedom inR of (3) is summed out, the
expansion formula (3) is similar to the linear combination of
atomic orbitals into a molecular orbital. Therefore, we can devise
a Mulliken17 bonding indicator in a solid. Mulliken’s idea is
that asψ2(r ) dr can be explained as the probability of an elec-
tron appearing in a microvolume dr . The probability that an
electron occurs between two atoms can be taken as a measure
for a bond order, and thus, the normalization condition of a
wave function naturally corresponds to the total probability in
the entire space. Now we start from (3) by assuming that the
energy dependence of the basis functions has been summed out.
Thek dependence of|øR

k〉 is due to the Bloch law as shown in
the following:

whereR represents the lattice vector in direct space, andτ and
L have the same meaning as described above. By using (3) and
(4), 〈kj|kj〉 ) 1 can be expanded as follows:

By changing the variablesr - R asr andR′ - R asR, (5) can
be rewritten as follows:

The part in the bracket can be defined as thek-dependent
overlap matrix element as

By using (7), (6) can be written in a more compact form as
follows:

Thus, the total probability of the|kj〉 state electrons occurring
in the entire space is partitioned into the on-site part (τ ) τ′)
and the intersite part (τ * τ′). The latter part can be used as a
bonding indicator to measure the contribution of a specific state
|kj〉 to the bonding between atomsτ andτ′:

Obviously,Bkj (τ,τ′) expresses essentially the same as COOP
in partitioning the electrons. It should be noted thatBkj (τ,τ′) is
also basis set dependent and thus is not an absolute indi-
cator. In fact, as the present bonding indicators do not cor-
respond to quantum mechanical operators, they are not measur-
able quantities of a microscopic quantum system. For example,
both COHP and TBB18 depend on the approach to partition the
total energy. The basis dependence ofBkj (τ,τ′) as defined in
(9) has some shortcoming; e.g., this bonding indicator cannot
be used in the case of an orthogonal basis. Some other problems
have been discussed in detail in ref 11. In practice, sinceBkj

(τ,τ′) depends on the expansion coefficientsCτ
kj (L), the

corresponding wave functions must be normalized in the same
way in order to compare the variation of the bonding indicators.
And whenτ andτ′ are not in the same primitive unit cell, the
corresponding coefficients and overlap integrals should be used
by considering the Bloch law. At the present stage, it is still
difficult to directly implement the above approach into the full
potential LMTO (FP-LMTO) framework due to the fact that
(i) the full potential LMTOs are long-ranged instead of tight-
binding, (ii) the full potential LMTOs are not onlyk-dependent
but alsoε-dependent, whereε is an energy parameter to rep-
resent the tail energy of the envelop function. Such prop-
erties make the above electron partition ill-defined and the
computation for the overlap matrix elements unnecessarily
tedious. In this work, we approximate the overlap matrix
elements in (5) by those obtained from the Slater basis. Such
an approximation is acceptable as the extended Hu¨ckel bands19

can be adjusted to the ab initio bands as we have shown in an
earlier paper.3

The indicatorBkj (τ,τ′) describes the bonding property of a
state|Φkj〉 for atomic pairs (τ,τ′), so it can be used to describe
the bonding property of an electronic state in a two-atom
molecule. However, for multiatom molecules and solids, it
cannot be used directly because the state|Φkj〉 involves many
atoms. To describe the bond character of a multiatomic state,
one needs to consider all of the pairs involved in this state.(11) Dronskowski, R.; Blo¨chl, P. E.J. Phys. Chem. 1993, 97, 8617.
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Hence, we define a functional for an electronic state|Φkj〉 as
follows:

where the summation in the numerator is done over all pairs
involved in a state|Φkj〉. The conditionτ < τ′ guarantees that
every pair is only counted once.N is the total number of such
pairs. For solids, the summation poses no problem because
only the pairs in the unit cell need to be considered due to
the periodicity. Even in the nonperiodic case, the summation
will terminate at limited terms, asBkj (τ,τ′) will become zero
when the distance betweenτ andτ′ exceeds some fixed value.
Psib(Φkj) is actually an algebraic average of the bonding
indicators, and therefore, it not only contains the dominant
bonding interactions but also considers the other weak interac-
tions and the possible cancellations among them. Accordingly,
we attribute the bond character of a state|Φkj〉 to Psib(Φkj). It
should be pointed out that as Mulliken’s electron number
partitioning scheme was used to determineBkj (τ,τ′), the
approximations such as the basis set dependence and other
problems11 are inherited to Psib(Φkj). However, as we are only
interested in the variation of Psib(Φkj), such approximations
will not hurt our result too much.

Computational Details

Mercury has been chosen as an example to illustrate the response
of a flat band state to phonons. On the basis of our preceding work,5

we know that for Hg only the first branch phonons along theΓ-L and
Γ-F directions of the first Brillouin zone (BZ) can effectively couple
to the electronic states in the vicinity of the Fermi level. In this work,
we have chosen the L1 and the L3 phonons, which couple strongly and
weakly, respectively. The eigen vectors obtained from the linear-
response calculations areeL1 ) (0, -1, 0) andeL3 ) (0.7884, 0, 0.6151)
in Cartesian coordinates. They are plotted in Figure 1. which shows
that the two phonon modes double the original primitive unit cell and
modulate the structure in a different way. It is interesting to learn why
they behave so drastically different in their coupling to the electrons
and how they affect the flat band state.

By freezing the above two phonons, we obtain two superstructures
(Hg-L1, Hg-L3) from the original rhombohedral structure of Hg. The
electronic structures may be computed for these structures via various
first-principles methods. In this work, the FP-LMTO20 method based
on the local-density approximation (LDA) of Janak-Moruzzi-Wil-
liams21 exchange-correlation potential with a general gradient ap-
proximation (GGA) of Perdew et al.22 has been employed, in which a

potential of arbitrary shape instead of the atomic sphere approximation
(ASA)23 ensures the accuracy when dealing with phonons. Besides,
the adiabatic approximation in dealing with the electron-phonon
systems is assumed in this work. To conveniently calculate and represent
some quantities in the interstitial region, the plane-wave Fourier
representation is used in this region, which requires pseudo-Hankel
functions instead of the singular Hankel functions to be taken as the
envelop functions. Except for the structural parameters, all other
computational parameters are the same for the three structures. The
2κ- 6s, 6p, 5d LMTO basis has been used for valence states, while the
5p state is treated as semicore state throughout this work. The one-
center expansions inside the MT spheres are performed up tolmax ) 6.
In the interstitial region, the pseudo-LMTOs are expanded in plane
waves up to 9.63, 13.3, and 20.0 Ry, 9.62, 14.5, and 20.4 Ry,
respectively, for 6s, 6p, 5d orbitals of Hg and Hg-L. The charge
densities and the potentials inside the MT sphere are represented by
the spherical harmonics up tolmax ) 6, while those in the interstitial
region are represented by 2634 and 5266 plane waves, respectively,
for Hg and Hg-L. The nontouching MT sphere radius is taken to be
2.82 and 2.76 au for Hg and Hg-L, respectively. The calculations have
been carried out to self-consistency by using a 18× 18 × 18 k-mesh
(580 independent k points for Hg, 5832 for Hg-L) and a modified
tetrahedron method with a nonlinear instead of the usual linear
interpolation.24 All calculations are based on the primitive unit cell
parametera ) 5.6427 au for Hg.

Results and Discussion

The phonon pattern ofL ) 1/2g2 shown in Figure 1 has the
Cartesian coordinates (-1/6, 1/2(3)1/2, 1/6tg(θ))2π/a′, with a′ )
a sin(θ), θ ) 41.946°, whereg2 is one of the reciprocal unit
cell basis vectors inq space. From Figure 1, it is obvious that
the frozen L phonon results in a doubled unit cell along thet2

direction of the undistorted rhombohedral cell. Accordingly, the
first Brillouin zone (BZ)o is reduced to half of the original one
along theg2 direction. As shown in Figure 2, theD3d symmetry
of (BZ)o is completely broken by the L phonon, and the
originally equivalent high-symmetryk points in part become
unequivalent. TheL point with a coordinate of (0,1/2, 0)
expressed in the reciprocal basis vectorsg1, g2, g3 is transformed
onto theΓ point in the new BZ, (BZ)L, of the Hg-L structure,
while the otherL point at (1/2, 0, 0) becomes unequivalent to
the former one. We call itB point. TheF point at (1/2, 1/2, 0) is
also transformed onto thisB point, while one of its equivalents
at (1/2, 0, 1/2) remains unmoved. We call itD point. The original
Z point at (1/2, 1/2, 1/2) also transforms onto thisD point. The
other k points in the BZ are transformed in a similar way;
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Figure 1. Projection of the orbitals of the (a)|Z6〉, (b) |D6〉, and (c)|F6〉 states of Hg together with the doubled unit cell and theL1 (a and b) andL3 (c)
phonon patterns represented by arrows. The numbering for the Hg atoms is additionally given in (a).

Psib(Φkj) ) ∑
τ<τ′

Bkj (τ,τ′)/N (10)
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however, we will focus on theF and Z points, because only
these twok points in the irreducible wedge of the BZ have flat
bands at the Fermi level.3 Due to the distortions of the structure
caused by the L1 and L3 phonons, the original degeneracy of
bands at the specialk points as described above is removed.
This effect is expected to be very small considering the energy
scale of phonons (Debye frequency) in comparison with that
of the electrons (Fermi energy). For this reason, as an illustration
we only have plotted the band structures of Hg-L1 in Figure 3,
which shows that the two flat bands atD stem from theF
(upper) andZ point (lower) in (BZ)L, respectively, while the
flat band at theB point is attributed to theF point. The electronic
states that lie in the original (BZ)o but outside of (BZ)L are all
folded into the latter, a fact that increases the number of bands
as compared to the band structure of undistorted Hg; see Figure
3. For some specialk points, the eigenvalues relative to the
Fermi energies and their changes caused by the corresponding
phonons are listed in Table 1. Also shown are the relations
between the electronic states in (BZ)o and (BZ)L. For example,
the |L7〉 state (L is thek point and 7 refers to the band index)
scatters via the L phonon to the|Γ13〉 state. The identities
between the eigenvalues of|L〉 and |B〉 and those of|D〉 and
|F〉 in undistorted Hg are simply the result of symmetry. As

shown in column∆1 and∆2, the mean values of the changes
of the eigenvalues with respect to the Fermi level are 0.001 73
(0.023 57 eV) and 0.00 167 Ry (0.022 71 eV) for L1 and L3

phonons, respectively. Provided the electron pairing is mediated
by the phonons, the pairing energy is in the order of∼0.02 eV,
a value that is consistent with the experimental and theoretical
findings. The fact that the mean value of the∆1 column is larger
than that of the∆2 column indicates a more effective coupling
of the L1 phonon with the electrons compared to the L3 phonon
in agreement with our earlier results of electron-phonon
coupling constant distribution inq space.5 Another interesting
fact concerns both the negative and the positive values occurring
in the ∆1 and ∆2 columns, which implies that with the
mediation of phonons the electronic states very close to the
Fermi level can fluctuate around the Fermi level, provided the
Fermi energy is not affected by the electron-phonon interaction.
The latter assumption can be verified by calculating the
electron-phonon self-energy at low temperature.25 It needs to
be pointed out that∆1 and∆2 as defined in Table 1 reflect the
second-order and higher effect of a phonon on an electronic
state because the first-order variation of the eigenvalue should
be zero.5,20 As far as the electron-phonon matrix element is
concerned, they reflect part of the electron-phonon coupling.
This can be seen by approximating the two splits:26 ε̃kn - ε̃k+

qm andεkn - εk + qm of “degenerate” Fermi states|kn〉 and |k
+ qm〉 with 2(ε̃kn - ε̃F) and 2(εkn - εF), respectively, for the
distorted and undistorted structure. Through this substitution,
the square electron-phonon matrix element (∆ε̃2 - ∆ε2)/4 in
ref 26 reduces to (|ε̃kn - ε̃F| - |εkn - εF|) (|ε̃kn - ε̃F| + |εkn -
εF|). Obviously our∆1 and∆2 correspond to the content in the
first parentheses. In ref 26,ε̃kn, εkn, etc., are all obtained through
interpolations, respectively based on the distorted and undis-
torted structure, while in our caseε̃kn andεkn are all eigenvalues
close to the Fermi level.

The relatively large differences among the Fermi energies
(see Table 1) can be attributed to the fact that the frozen phonon
approach treats the phonon affected structure as a statically
different structure, which is obviously a drawback of this
approach. However, the quantities in Table 1 are all relative
ones to the corresponding Fermi energies, so the drawback
mentioned above is well overcome.

We thus give numerical evidence to our earlier speculation
that the flat band state at the Fermi level can be dynamically
emptied and filled due to lattice vibrations3. As shown in Table
1, among the flat band states close to the Fermi level, the state
|Z6〉 is most effectively coupled to the L1 phonon, the next is
|D6〉, while the state|F6〉, which is equivalent to|D6〉, is the
least. Such differences between the effects of L1 and L3 phonons
and the resulting changes to the different flat band states can
be explained reasonably well by investigating the bonding
property and its variation during the electron-phonon interaction
process. In Table 2, we list the calculated values of Psib(Φ) as
defined in this work for the flat band states of Hg and their
variations. The identity of the numerical values for Psib(D6)
and Psib(F6) is of no surprise as they refer to actually equivalent
states in the rhombohedral structure of Hg. Our calculation
indicates that|Z6〉 is a pure pz state, while|F6〉 and |D6〉 are

(25) Butler, W. H.Treatise on Materials Science and Technology; Fradin, F.
Y. Ed.; Academic Press: New York, 1981; Vol. 21, p 165.

(26) Liechtenstein, A. I.; Mazin, I. I.; Rodriguez, C. O.; Jepsen, O.; Andersen,
O. K. Phys. ReV. B 1991, 44, 5388.

Figure 2. Projections of the first Brillouin zones (a) (BZ)o of Hg and (b)
(BZ)L corresponding to Hg distorted by the frozenL phonons and (c) (BZ)L

inserted into (BZ)o for direct comparison.

Figure 3. Band structure of Hg distorted by the frozen L1 phonon along
selected symmetry lines calculated by the full potential LMTO method.
(See also Figure 2b.)
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hybrids of 0.2574px + 0.4349py + 0.4946pz, and 0.2574px -
0.4349py + 0.4946pz, respectively. This difference in combina-
tion with the phase change required by the Bloch law decides
the bonding difference between these states. For example, due
to the pure pz character, the bonding property of|Z6〉 is isotropic,
namely. B(1,2) ) B(1,3) ) B(1,4)... ) 0.531 × 10-1 (first
nearest neighbors (nn));B(2,3) ) B(2,4) ) B(3,4)...) 0.75×
10-2 (second nn);B(2,7) ) B(3,6) ) B(4,5) ) 0.85 × 10-3

(third nn);B(1,5)) B(1,6)) B(1,7)...) -0.185× 10-2 (fourth
nn). While those for the|F6〉 are very anisotropic, e.g., in the
case of first nnB(1,2) ) 0.5711× 10-1, B(1,3) ) 0.5529×
10-1, B(1,4) ) 0.2131× 10-1, .... Obviously, it is the mixing
of px and py into pz that reduces the overlap of the relevant
orbitals of |F6〉 and |D6〉 and thus weakens their bonding
properties as indicated by Psib(|F6〉) and Psib(|D6〉) in Table
2. The most interesting fact in Table 2 is that all of the absolute
values of∆Psib(Φ) for the L1 phonon are larger than those for
L3 phonons. This fact implies that the L1 phonon causes stronger
electron-phonon interactions, which produce a larger change
of the bonding property of an electronic state as indicated by
the value of Psib(Φ). In our present approach, the changes of
the functional Psib(Φ) arise from mainly two sources. The first
one concerns the changes of the overlap integrals caused by
the static distortion of the structure, which enters into Psib(Φ)
through formulas 5 and 6. The second one is due to the change
of the wave function. For example, from|Z6〉 to |D11〉, the wave
function changes from a pure pz state to a hybrid state of s, p,
and d waves, which will result in new terms in the calculation
of Bkj (τ,τ′) in (5) and thus changes the value of Psib(Φ).
Obviously, the former one reflects the way a phonon distorts a
structure, while the latter one reflects how an electronic state
responds to this distortion. As shown in Figure 1, the L1 phonon
should couple to the corresponding states more strongly than
the L3 phonon because it can stretch the bonds more effectively
than the L3 phonon according to their displacement patterns.

The larger variation of Psib(|D6〉) as compared to that of
Psib(|F6〉) shown in Table 2 can easily be explained by
inspecting their orbital topology and the phonon pattern as
shown in Figure 1. It is obvious that both L1 and L3 phonons
mainly affect the bonding along thet2 direction; however, for
|F6〉, that direction is associated with stronger bonding due to
stronger overlap (B(1,3) ) 0.5529× 10-1), while for |D6〉, it
is weaker (B(1,3) ) 0.2131× 10-1). Therefore, both the L1
and L3 phonons will hardly distort|F6〉. The larger variation of
Psib(|Z6〉) compared to Psib(|D6〉) cannot be explained by only
considering the first-order bonding interaction as before, because
B(1,3) ) 0.531× 10-1 of |Z6〉 is even larger than that of|D6〉
(0.2131× 10-1). However, the second order Psib(|Z6〉) is much
smaller (0.75× 10-2) than that of|D6〉 (0.1321× 10-1), and
so is the third order Psib value. Besides, since|Z6〉 is a pure pz
state, the contribution of wave function variations to this state
as discussed above is larger than that of|D6〉. These factors
combine to produce a larger variation of Psib(|Z6〉) than that of
Psib(|D6〉). In fact, higher order Psib(Φ) should play a more
important role than the first order Psib(Φ) in deciding the
variations, because normally the phonon energy is not high
enough to influence the first nn bonding.

On the basis of the above discussions, we give a rational
explanation for the flat band states having electron-phonon
coupling strengths according to|Z6〉 > |D6〉 > |F6〉 as shown
in Table 1. It should be noted that in this work the electron-
phonon coupling has been discussed based on the quantity
(∆Ekj), which is related to the “electron-phonon matrix
elements” as discussed above. Though the electron-phonon
matrix element is of greatest importance among the factors27

that influence the electron-phonon coupling constantλ as used
by physicists, it is generally necessary to consider the geo-
metrical structure of the Fermi surface and the Fermi velocities
in order to get a full understanding of the peaklike structure of
λ in q space. The reason for the necessity to include the
“geometrical effect” and the “velocity effect” is becauseλ(q)
contains all the contributions of the electronic states that are
related byq. For Hg, as there is no flat sheet on the Fermi
surface and no structure for the density of states at EF, these
two effects should be even smaller than those in Nb.25 Therefore,
the change of Psib(Φ) that indicates the matrix element effect
can reveal the origin of the peaklike structure ofλ in q space
for Hg5.

(27) Butler, W. H.; Smith, H. G.; Wakabayashi, N.Phys. ReV. Lett. 1977, 39,
1004.

Table 1. Eigenvalues (Ry) and Their Changes at Some k Pointsa

Hg-0
EF ) 0.557 13

Hg-L1
EF ) 0.585 44

Hg-L3
EF ) 0.584 14

∆E(kj) ∆E(kj) ∆1 ∆E(kj) ∆2

-0.157 65 (L7) -0.158 50 (Γ13) 0.8452× 10-3 -0.159 02 (Γ13) 0.1370× 10-2

-0.162 07 (L6) -0.163 78 (Γ12) 0.1710× 10-2 -0.163 45 (Γ12) 0.1380× 10-2

0.103 53 (Z7) 0.102 53 (D14) -0.9998× 10-3 0.101 08 (D14) -0.2440× 10-2

-0.017 93 (Z6) -0.020 78 (D11) 0.2840× 10-2 -0.019 37 (D11) 0.1440× 10-2

0.061 97 (D7) 0.060 89 (D13) -0.1080× 10-2 0.059 91 (D13) -0.2060× 10-2

-0.016 00 (D6) -0.018 63 (D12) 0.2620× 10-2 -0.017 45 (D12) 0.1450× 10-2

-0.157 65 (B7) -0.159 68 (B12) 0.2030× 10-2 -0.159 57 (B12) 0.1920× 10-2

-0.162 07 (B6) -0.164 74 (B11) 0.2670× 10-2 -0.163 85 (B11) 0.1790× 10-2

0.061 97 (F7) 0.059 83 (B14) -0.2150× 10-2 0.060 03 (B14) -0.1940× 10-2

-0.016 00 (F6) -0.016 38 (B13) 0.3740× 10-3 -0.016 91 (B13) 0.9025× 10-3

a EF is the Fermi energy,∆E(kj) ) E(kj) - EF, ∆1 ) |∆E(kj) of Hg-L1|-| ∆E(kj) of Hg-0|, ∆2 is defined similarly to∆1. After each value, thek point
and band index in the corresponding BZ is given in parentheses.

Table 2. Values of Psib(Φ) × 102 for the Flat Bands of Hg and
Their Variations Caused by the Phonons L1 and L3

a

Hg-0 Hg-L1 Hg-L3

Psib (Φ) Psib (Φ) ∆Psib Psib (Φ) ∆Psib

1.3754 (Z6) 1.0923 (D11) -0.2831 1.2246 (D11) -0.1508
1.2964 (D6) 1.0229 (D12) -0.2735 1.1490 (D12) -0.1474
1.2964 (F6) 1.0462 (B13) -0.2502 1.1575 (B13) -0.1389

a The ∆Psib values are calculated as Psib(Φ2) - Psib(Φ1), whereΦ1
represents the initial state as in the first column, whileΦ2 is the final
state.
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In summary, the frozen phonon approach has been used to
study the electronic structure of Hg. By introducing a new
functional Psib(Φ), we have provided a chemical approach to
explain the coupling between a specific electronic state and a
specific phonon. The approximations in the calculations of
Psib(Φ) can be improved by using energy partitioning scheme

in calculatingBkj (τ,τ′) and thus to put the whole calculations
in one frame. This will be left to our future work.
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